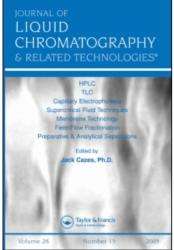
This article was downloaded by:


On: 23 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography & Related Technologies

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597273

The Book Corner

Haleem J. Issaq^a

^a SAIC, NCI-FCRDC, Frederick, Maryland

To cite this Article Issaq, Haleem J.(2009) 'The Book Corner', Journal of Liquid Chromatography & Related Technologies, 32: 19, 2917 - 2921

To link to this Article: DOI: 10.1080/10826070903304248 URL: http://dx.doi.org/10.1080/10826070903304248

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Journal of Liquid Chromatography & Related Technologies®, 32: 2917–2921, 2009

Copyright © Taylor & Francis Group, LLC ISSN: 1082-6076 print/1520-572X online

DOI: 10.1080/10826070903304248

HANDBOOK OF MEMBRANE SEPARATIONS: CHEMICAL, PHARMACEUTICAL, FOOD AND BIOTECHNOLOGICAL

APPLICATIONS, Anil K. Pabby, Syed S. H. Rizvi, and Ana Maria Sastre, Eds., CRC Press, Boca Raton, FL, USA.

This handbook is a massive volume (1164 pages) that deals with all aspects of membrane separations in a comprehensive manner. The term membrane covers a large variety of structures and materials with very different properties. The same is true for membrane processes. The Handbook is divided into three main sections totaling 43 chapters. Section I is a presentation of membrane applications in various industries, including the chemical and pharmaceutical industries, while Section II is devoted to applications in biotechnology, food processing, life sciences, and energy conservation. Section III is a discussion of membrane applications in industrial waste; it presents future trends in membrane science. Each chapter contains up-to-date references. It is not unusual that some of the chapters contain over 200 references, which means that the authors are well versed in their areas of expertise. Each chapter is well illustrated with figures. The discussion is clear and to the point.

In general, the Handbook presents in-depth knowledge of membrane separation mechanisms, comprehensive membrane applications in different industries from pharmaceutical to nuclear waste; and information on various membrane components and processes. The Table of Contents shows the wide range of topics discussed in this Handbook. Those who are interested in membrane separations are advised to purchase a copy of the Handbook of Membrane Separations, Chemical, Pharmaceutical, Food and Biotechnological Applications. The editors as well as the authors have done a commendable job.

Table of Contents

- Section I. Membrane applications in chemical and pharmaceutical industries and in conservation of natural resources
- Membrane applications in chemical and Chapter 1 pharmaceutical industries and in conservation of natural resources: introduction

Chapter 2	Application of membrane contactors as mass			
	transfer devices	7		
Chapter 3	Membrane chromatography	25		
Chapter 4	Membranes in gas separations	65		
Chapter 5	Pervaporation: theory, practice, and applications in			
1	chemical and allied industries	107		
Chapter 6	Current status and prospects for ceramic membrane			
1	applications	139		
Chapter 7	Membrane technologies and supercritical fluids:			
	recent advances	181		
Chapter 8	Techniques to enhance performance of membrane			
	processes	193		
Chapter 9	Separation and removal of hydrocarbons using			
enap (C)	polymer membranes	233		
Chapter 10	Zeolite membranes: synthesis, characterization,			
enapter 10	important applications and recent advances	269		
Chapter 11	Membrane fouling: recent strategies and	_0,		
enapter 11	methodologies for its minimization	325		
Chapter 12	Membrane extraction in preconcentration,	020		
	sampling and trace analysis	345		
Chapter 13	Hybrid membrane liquid processes with			
	organic-water immiscible carriers (OHLM):			
	applications in chemical and biochemical			
	separations	371		
Chapter 14	Advances in membrane processes for			
1	pharmaceutical applications	409		
Chapter 15	Mebranes in drug delivery	427		
Chapter 16	Bio-responsive hydrogel membranes	473		
1	1 2 2			
Section II	Membrane applications in biotechnology, food processing	ıg,		
life sciences and energy conversion				
Chapter 17	Membrane applications in biotechnology, food			
	processing, life sciences and energy conversion:			
	introduction	495		
Chapter 18	Ultrafiltration-based protein bioseparation	497		
Chapter 19	Membrane distillation in food processing	513		
Chapter 20	Applications of membrane separations in brewing			
	industry	553		
Chapter 21	Development of bipolar membrane technology in			
-	food and Bio-industries	581		
Chapter 22	Applications of membrane technology in the dairy			
•	industry	635		
Chapter 23	Microporous membrane blood oxygenators	671		

Chapter 41	Membrane processes for treatment of industrial	
	tannery effluents: a case study	1087
Chapter 42	New developments in nanofiltration technology:	
	a case study on recovery of impurity-free sodium	
	thiocyanate for acrylic fiber Industry	1104
Chapter 43	Future progress in membrane engineering	1137
Index		1147

Haleem J. Issaq, Ph.D. SAIC, NCI-FCRDC Frederick, Maryland

MULTIDIMENSIONAL LIQUID CHROMATOGRAPHY

Theory and Application in Industrial Chemistry and the Life Sciences, Steven A. Cohen and Mark D. Schure, Eds., Wiley-Interscience, New York, USA, 2008.

This book is the most recent introduction to the liquid chromatography library. It is edited by two well known chromatographers, Drs. Steven A. Cohen and Mark D. Schure. The book is divided into five sections with a total of eighteen chapters. Part I (Chapters 2–4) deals with theory of chromatography; Part II (Chapters 5-8) discusses different aspects of columns, instrumentation, and method development; Part III (Chapters 9-14) introduces the reader to various life science applications, while Part IV (Chapters 15, 16) deals with multidimensional separations including capillary electrophoresis. The final part, Part V (Chapters 17, 18), is devoted to industrial applications. In total, the book comprises 456 pages, hundreds of references, and tens of illustrations. The references are current and the illustrations are clear and easy to understand. The authors of the chapters are well versed in their areas of expertise. They include Tanaka, Jorgenson, Unger, Lubman, Washburn, Armstrong, Dovichi, Issaq, and others. It is refreshing that the editors of this book wrote or co-authored six chapters. The book is well organized. It contains a balanced mix of theory and experiment, as the list of chapters indicate, and will be beneficial to the novice as well as the expert. The editors should be commended on a job well done!

Table of Contents

Chapter 1 Introduction

Chapter 2 Elements of the theory of liquid chromatography

Chapter 3	Peak capacity in two-dimensional liquid
	chromatography
Chapter 4	Decoding complex 2D separations
Chapter 5	Instrumentation for comprehensive multidimensional liquid chromatography
Chapter 6	Method development in multidimensional liquid chromatography
Chapter 7	Monolithic columns and their 2D-HPLC applications
Chapter 8	Ultrahigh pressure multidimensional liquid
C1	chromatography
Chapter 9	Peptidomics
Chapter 10	A 2-D liquid mass mapping technique for biomarker discovery
Chapter 11	Coupled multidimensional chromatography and
	tandem mass spectrometry systems for complex
	peptide mixture analysis
Chapter 12	Development of orthogonal 2DLC methods for
•	separation of peptides
Chapter 13	Multidimensional separation of proteins with online electrospray time-of-flight mass spectrometric
	detection
Chapter 14	Analysis of enatiomeric compounds using
1	multidimensional liquid chromatography
Chapter 15	Two-dimensional capillary electrophoresis for the
	comprehensive analysis of complex protein mixtures
Chapter 16	Two-dimensional HPLC-CE methods for
•	protein/peptide separation
Chapter 17	Multidimensional liquid chromatography in
1	industrial applications
Chapter 18	The analysis of surfactants by multidimensional

Haleem J. Issaq, Ph.D. SAIC, NCI-FCRDC Frederick, Maryland

liquid chromatography